
Contents Contents

CUSTOM STRATEGY
PROGRAMMER’S MANUAL

Baldur Gíslason

February 2, 2021

Contents

1 Introduction 2

2 Terminology 3

3 Syntax 4
3.1 Data types . 4
3.2 Operators . 5
3.3 Built in constants . 7
3.4 Built in variables . 7
3.5 Built in functions . 8

3.5.1 Table lookup functions 9
3.5.2 Curve lookup functions 9
3.5.3 Miscellaneous library functions 10
3.5.4 Communication functions 10
3.5.5 System functions . 10

4 Custom real time variables 12
4.1 Properties . 12

5 Custom configuration variables 15
5.1 Configuration flash storage 15

5.1.1 Properties . 16
5.2 Configuration user interface 20

5.2.1 Properties . 20

6 A coding tutorial 23
6.0.1 Serial port communications example 24

1

1. Introduction

1 Introduction

This manual describes the syntax and how-tos of the custom strategy
development environment on Baldur’s Control Systems electronic control
units.
The custom strategies are written in a programming language that is spe-
cific to this application. It is a compiled language but runs in a virtual
machine environment on the ECU rather than being compiled to native
ARM machine language. The programming environment allows read ac-
cess to every real time variable and every configuration item found on the
ECU. It also provides a memory stack as well as memory allocation space
static to the custom strategy environment. Custom real time variables
may be declared in the custom strategy environment and they become
first class members of the real time data memory, including the ability to
be used as inputs to existing strategies, the ability to be data logged by
the controller’s built in memory as well as the ability to be sent over the
CAN network like predefined real time variables. Not like user defined
variables that are created inside the Calibrator application and don’t exist
on the ECU.
Custom configuration variables, including tables and curves may also
be defined and accessed from the Calibrator application as well as the
custom strategy code, and these appear in the configuration tree in Cali-
brator like existing configuration variables.
As of the writing of this document, the compiler and development envi-
ronment is in a very early state of development, and while stable and rea-
sonably well tested, many features remain to be implemented. It would
be highly useful to get feedback from users of the programming environ-
ment on what it is lacking the most.

2

2. Terminology

2 Terminology

3

3. Syntax

3 Syntax

The syntax in many ways resembles the C language, but is not a full
implementation of the C language. The language is case sensitive. State-
ments are terminated by semicolons, arrays are denoted by square brack-
ets, function blocks are enclosed in curly brackets. Variables and con-
stants may be defined outside of functions only, but stack memory is pro-
vided for function call arguments. Anything in a line that is preceded by
two forward slashes (//) is ignored by the compiler and may be used for
comments or to temporarily disable execution of those lines. In the vir-
tual machine, all function calls return a 32 bit signed value, and all func-
tion arguments are 32 bit signed as well but types may be specified for
clarity of what range of values are to be expected. Function arguments
are literal values except for array types they are references. References ig-
nore the type specified but always inherit the type of the passing variable,
type may be specified for clarity. All data is stored in little endian byte
order. The virtual machine has a single execution thread and callbacks
are made from the ECU’s main background loop which is interruptable
by real time functions such as the handling of timed inputs and outputs.
A good indicator of the overall strain on the ECU’s microprocessor is the
mainfrequency real time variable, that indicates how often over the past
second the main thread was able to complete a full loop. Currently, vari-
ables must be defined outside of functions, stack memory is only available
for function arguments, but arguments are writable inside the function.
It is also legal to call a function with fewer arguments than the function
header defines. When a program starts up, the special function init is
called. If the init function does not register any call backs to functions
to be executed later then no further program execution will happen after
the init function exits.
For best results, computation heavy functions should only execute as
frequently as new values are required, delegating them to fixed interval
callbacks if infrequent updates are necessary or using variables to keep
track of when updates are necessary.
Callbacks that override the assignment of existing variables should in
most cases be kept simple as in many cases they execute as frequently as
on every loop of the main thread.

3.1 Data types
The following data types are available for variables.

4

3. Syntax 3.2. Operators

const A named constant, can be given a value as it is defined. Is a 32 bit
signed value.

uint8 Unsigned 8 bit integer.

uint16 Unsigned 16 bit integer.

uint32 Unsigned 32 bit integer.

int8 Signed 8 bit integer.

int16 Signed 16 bit integer.

int32 Signed 32 bit integer.

In the variable definition, the variable name may be succeeded by square
brackets enclosing a number to mark that the variable is an array, and
the number inside the brackets marks the number of elements making up
the array. When defining a function argument that is to be a reference to
an array, the name should be succeeded by square brackets with nothing
inside. Array elements can be addressed individually by specifying the
array name succeeded by the element number inside square brackets. The
first element in an array is number zero.

3.2 Operators
= Assignment operator. Left of the operator is the destination to be

written to with the value of what is on the right of the operator.
The compiler will throw an error if the destination is not writable
by the custom strategy programming environment. Writable vari-
ables include static variables declared in the programming environ-
ment, stack variables declared inside of a function call, real time
variables declared as part of the custom strategies and built in vari-
ables part of the programming environment such as callback point-
ers.
Examples of destinations that are NOT writable by this operator
include configuration variables, pre-existing real time variables, de-
clared and built in functions, and any kind of constant with the ex-
ception that user defined named constants can be assigned a value
at time of definition.

== Equal comparison operator, returns true if values on both sides are
equal.

>= Greater than or equal comparison operator, returns true if the value
on the left of the operator is greater than or equal to the value on
the right.

> Greater than comparison operator, returns true if the value on the left
of the operator is greater than the value on the right.

5

3. Syntax 3.2. Operators

<= Less than or equal comparison operator, returns true if the value
on the left of the operator is less than or equal to the value on the
right.

< Less than comparison operator, returns true if the value on the left of
the operator is less than the value on the right.

<< Left shift operator. The result is the value on the left shifted left by
the value on the right. Effectively the result is a multiplication by 2
to the power of the number on the right. In cases where a multipli-
cation by any number that is a power of 2 is desired, performing a
bit shift may execute faster.

>> Right shift operator. The result is the value on the left shifted right
by the value on the right. Effectively the result is a division by 2 to
the power of the number on the right. In cases where a division by
any number that is a power of 2 is desired, performing a bit shift
will definitely result in faster execution.

& Bitwise AND operator. Bits that are 1 in the values passed on both
sides of the operator will be 1 in the result.

| Bitwise OR operator. Bits that are 1 in values on either side of the
operator will be 1 in the result.

&& Logical AND operator. If values on both sides of the operator are
not equal to 0, this operator returns a value of 1.

|| Logical OR operator. If a value on either side or both sides of the oper-
ator are not equal to 0, this operator returns a value of 1.

+ Adding operator.

- Subtracting operator. May also preceed a numeric value to indicate it is
a negative value.

* Multiplication operator.

/ Division operator. Quotient on the left, dividend on the right.

% Remainder operator. Returns the remainder of an integer division in
which the quotient is on the left and the dividend is on the right.

∧ Bitwise XOR operator.

[] Array access operator. Used to access an item from an array of val-
ues for either reading or writing. For example foo[0] = 1; or foo =
bar[5];

6

3. Syntax 3.3. Built in constants

3.3 Built in constants
user_out0 up through user_out15 These constants describe output

pins that may be associated with physical outputs on the ECU or as
conditions for built in ECU strategies.
These also set corresponding bits in the real time variable user-
flags which is referred by aliases userflag0 up through user-
flag15.

caninterfacecount Denotes the number of CAN interfaces available on
this ECU.

3.4 Built in variables
callback_1hz A function pointer called once per second. The function

takes no arguments and no return value is expected.

callback_2hz A function pointer called twice per second. The function
takes no arguments and no return value is expected.

callback_5hz A function pointer called 5 times per second. The func-
tion takes no arguments and no return value is expected.

callback_10hz A function pointer called 10 times per second. The func-
tion takes no arguments and no return value is expected.

callback_20hz A function pointer called 20 times per second. The func-
tion takes no arguments and no return value is expected.

callback_25hz A function pointer called 25 times per second. The func-
tion takes no arguments and no return value is expected.

callback_50hz A function pointer called 50 times per second. The func-
tion takes no arguments and no return value is expected.

callback_100hz A function pointer called 100 times per second. The
function takes no arguments and no return value is expected.

callback_200hz A function pointer called 200 times per second. The
function takes no arguments and no return value is expected.

callback_250hz A function pointer called 250 times per second. The
function takes no arguments and no return value is expected.

callback_500hz A function pointer called 500 times per second. The
function takes no arguments and no return value is expected.

callback_1000hz A function pointer called 1000 times per second. The
function takes no arguments and no return value is expected.

7

3. Syntax 3.5. Built in functions

callback_can1rx A function pointer called each time a frame is re-
ceived on CAN interface 1.
Arguments:
(uint32 CANID, uint8 DLC, uint32 DataA, uint32 DataB)
No return value is expected.

callback_can2rx A function pointer called each time a frame is re-
ceived on CAN interface 2.
Arguments:
(uint32 CANID, uint8 DLC, uint32 DataA, uint32 DataB)
No return value is expected.

callback_uart0rx A function pointer called when one or more bytes of
data have been received on UART 0. If this callback is not set prior
to calling init_uart() then receiving will be disabled altogether.
Arguments:
(uint8 count, uint8 data[])

callback_uart3rx Same as callback_uart0rx but for UART 3.

userpwmpw1 up through userpwmpwXX depending on controller
User defined PWM output pulse width in microseconds. Pulse
widths shorter than 100 microseconds are ignored by the output
control code and will disable the output temporarily.

userpwmperiod1 up through userpwmperiodXX depending on controller
User defined PWM output pulse interval period in microseconds.
The output control code has hard coded minimum periods that vary
by output and will respect those. The longest period that will be
respected in any case is 1 million microseconds (1 second). Since
both the pulse width and period are specified in microseconds, the
pulse width must be some fraction of the period for the output to
work correctly.

3.5 Built in functions
varpicker Used to get the value from the variable a varpicker type con-

figuration value points to, takes one argument which is the varpicker
pointer value.
Example: if foo is a configuration variable of varpicker type and it
is set to point to analog0, then varpicker(foo) returns the value of
analog0.

ternary A function that takes 3 arguments. First argument is evaluated
and if its value is non-zero the second argument is evaluated and
its value returned, otherwise the third argument gets evaluated and
returned.

8

3. Syntax 3.5. Built in functions

3.5.1 Table lookup functions
A number of table lookup functions are provided, they all follow the same
basic format but differ in the data types they operate on.

tablelookup16 Perform a lookup with linear interpolation on an un-
signed 16 bit table using unsigned 16 bit table axis.
Arguments:
(uint16 table[], uint16 xaxis[], uint16 yaxis[], uint8 xdims, uint8
ydims, uint16 xvalue, uint16 yvalue)

tablelookups16 Perform a lookup with linear interpolation on a signed
16 bit table using unsigned 16 bit table axis.
Arguments:
(int16 table[], uint16 xaxis[], uint16 yaxis[], uint8 xdims, uint8 ydims,
uint16 xvalue, uint16 yvalue)

tablelookup8 Perform a lookup with linear interpolation on an unsigned
8 bit table using unsigned 16 bit table axis.
Arguments:
(uint8 table[], uint16 xaxis[], uint16 yaxis[], uint8 xdims, uint8
ydims, uint16 xvalue, uint16 yvalue)

tablelookups8 Perform a lookup with linear interpolation on a signed 8
bit table using unsigned 16 bit table axis.
Arguments:
(int8 table[], uint16 xaxis[], uint16 yaxis[], uint8 xdims, uint8 ydims,
uint16 xvalue, uint16 yvalue)

3.5.2 Curve lookup functions
curvelookup16 Perform a lookup with linear interpolation on an un-

signed 16 bit curve using unsigned 16 bit table axis.
Arguments:
(uint16 curve[], uint16 axis[], uint8 dims, uint16 input)

curvelookups16 Perform a lookup with linear interpolation on a signed
16 bit curve using unsigned 16 bit table axis.
Arguments:
(int16 curve[], uint16 axis[], uint8 dims, uint16 input)

curvelookup16 Perform a lookup with linear interpolation on an un-
signed 8 bit curve using unsigned 16 bit table axis.
Arguments:
(uint8 curve[], uint16 axis[], uint8 dims, uint16 input)

curvelookup16 Perform a lookup with linear interpolation on a signed 8
bit curve using unsigned 16 bit table axis.
Arguments:
(int8 curve[], uint16 axis[], uint8 dims, uint16 input)

9

3. Syntax 3.5. Built in functions

3.5.3 Miscellaneous library functions
crc8 Computes CRC8 checksum of an array of bytes.

Arguments:
(uint8 data[], uint8 offset, uint8 length, uint8 seed, uint8 poly)
data is a reference to an array of bytes. offset is an offset into the
array to start from, usually 0. length is the number of bytes to pro-
cess. seed is the initial value of the crc register. poly is the value
convolutionally XOR’ed with the value on each iteration.

3.5.4 Communication functions
can1tx Transmit data on first CAN bus interface.

Arguments:
(uint32 CANID, uint8 DLC, uint8 data[])
CANID is the frame identifier, up to 29 bits long.
DLC is the data length descriptor, a maximum of 8 bytes.
data is a pointer to an array.
Return value is 1 if transmission was successful, 0 if all transmit
buffers are full and transmission was not possible.

can2tx Transmit data on the second CAN bus interface if the system is
equipped with two or more CAN interfaces. Otherwise same syntax
as can1tx.

init_uart Initialises serial port UART. If data is to be received, the
appropriate callback must be assigned before calling this function.
Arguments:
(uint8 uart, uint32 baudrate)
uart specifies the UART to initialise. Valid options are 0 or 3. Some
controllers may not have any external pins connected to the UARTs,
but all have UART 0 available on a 4 pin header internally which
can be connected to a Bluetooth module or a level shifter circuit for
wired connections.
baudate specifies the data rate. Valid options are 1200, 4800, 9600,
19200, 38400, 57600 and 115200

uart0tx Transmits data on UART 0. A maximum of 64 bytes may be
transmitted at once.
Arguments:
(uint8 count, uint8 data[])

uart3tx Same as uart0tx but for UART 3

3.5.5 System functions
getbit Get the value of a system logic bit as described by the map_in-

puts value map in the configuration file. Best used in conjunction
with a configuration item that is of enum type and associates with
map_inputs for its values.
Arguments:

10

3. Syntax 3.5. Built in functions

(uint8 bit)
Returns the value of the bit selected, either 0 or 1.

setbit Sets the value of an output pin, it is best to only use the named
constants for user program output pins (user_out0 up through
user_out15) as arguments to this function. Note that the bit num-
bers are not compatible with those used by the getbit function.
Arguments:
(uint8 bit, uint8 booleanstate)
Has no defined return value.

startlogging Starts recording a data log to the internal logging mem-
ory of the ECU. Takes one argument which is the type of log to be
recorded if the ECU supports multiple types of logs.
Arguments:
(uint8 logtype)
The following log types are valid in general, but not all controllers
support all types of logs.
1: Standard log, a snapshot of the real time variable struct taken
at fixed intervals with the possibility of a variable interval in burst
mode.
2: Event log, a log record written for every input and output event
in an event based ECU such as the LPC4/LPC8 and DID1. Not
available on the MPC1 and DSL1.
3: Structured log, a snapshot of the real time variable struct taken
at fixed intervals but with the possibility of recording selected vari-
ables at faster rates in 4 groups of 16 variables.
4: CAN receive log, writes a log entry for every CAN frame received
on any CAN interface. Transmitted frames are not recorded.
Returns no defined value.
The log status may be observed on the logging, logrecs and logsta-
tus variables.

stoplogging If a data log is being recorded to the controller’s internal
memory, this will halt logging. Takes no arguments, returns no
value.

11

4. Custom real time variables

4 Custom real time variables

Real time variables are variables that can be logged, displayed in Calibra-
tor and used as inputs to standard ECU functions.
Currently these are described in JSON format, but a graphical interface
to edit this descriptor is planned.
The descriptor is a JSON array of objects, so it starts and ends with
square brackets and inside it the objects are surrounded by curly braces,
separated by commas.
Example:
[

{
"id": "yawrate",
"type": 2,
"unit": "degrees/second",
"digits": 1,
"scale": 0.1,
"sign": 1,
"descr": "Computed yaw rate"

},
{

"id": "yawrate_desired",
"type": 2,
"unit": "degrees/second",
"digits": 1,
"scale": 0.1,
"sign": 1,
"descr": "Desired yaw rate according to steering angle"

}
]

4.1 Properties
A number of properties can be described in a real time variable descriptor,
most of them optional. Identifier is the only mandatory field but if a type
is not specified then the default type is a bit which must be accompanied
by an address property.

id Identifier of variable. Case sensitive. Apart from ASCII letters and
numbers the only other character allowed is the underscore. Must
not begin with a number and must not contain any spaces.

type Variable type. The following types are permitted:

12

4. Custom real time variables 4.1. Properties

0 Bit. Must be accompanied by an address making it an alias for a
single bit of another variable.

1 8 bit integer, sign specified separately.
2 16 bit integer, sign specified separately.
3 32 bit integer, sign specified separately.
5 32 bit IEEE float. No library functions are currently available in

the programming environment for handling these but they are
understood by Calibrator.

6 64 bit IEEE double. No library functions are currently available
in the programming environment for handling these but they
are understood by Calibrator.

8 Enumerator translating an integer value to text. An address can
be specified to associate with a subset of bits on another vari-
able, if address is omitted it takes the form of an 8 bit integer
variable.

10 Time stamp, 32 bits long comprised of multiple values.
Bits 5..0 seconds.
Bits 11..6 minutes.
Bits 16..12 hours in 24h format
Bits 21..17 day of month
Bits 25..22 month
Bits 31..26 years since 2015

sign If omitted, the variable is unsigned. If specified with a value of 1
the variable is signed.

unit Text specifying the unit of the variable. Default is empty.

digits Specifies the number of digits after the decimal point when vari-
able is logged or displayed in Calibrator. Default 0.

scale A floating point multiplier used when displaying or logging the
variable in Calibrator.

offset An integer number added to the raw number prior to scaling, can
be negative even if the value is unsigned.

inverse If this option is specified with a value of 1, the result is inverted
(1 over result division) before displaying.

expression A mathematical expression to fomat the value prior to dis-
playing, where preformatted value is represented by lower case letter
x but other variables or config items may be referenced as well. See
Calibrator documentation for format of expression. Makes variable
ineligible for use in varpicker options so it will not be available for
use in ECU control strategies.

descr A text description of the variable displayed in Calibrator variable
lists.

13

4. Custom real time variables 4.1. Properties

address Byte offset inside the real time variable memory space, or in the
case of a single bit or enumerator variable the name of the parent
variable and the bit offset inside of it. For single bit, bitmask.0
specifies the lowest significant bit of variable bitmask. For enums,
bitmask.1.3 specifies a range of bits starting at bit 1 ending at bit
3 on the variable bitmask.

variations An array of conditions and following each condition an object
whose contents is included in the parent object if the condition is
true, overriding existing fields. Each condition contains a configu-
ration variable, a comparison operator and a value. For each con-
dition there should be a corresponding inverted condition to undo
whatever changes that condition made if it no longer applies. If the
corresponding object includes an endif clause, then the condition
list will not be evaluated further once the object has been applied,
otherwise there are no limits on how many conditions can apply.
Example:
"variations": [

["fuelstrategy", "=", "Fuel mass"], { "unit": "mg/cycle", "endif":
↪→ true },

["fuelstrategy", "=", "Air mass (VE)"], { "unit": "%" }
]

14

5. Custom configuration variables

5 Custom configuration variables

Due to the way configuration as stored by the ECU can differ a lot from
how it’s displayed in Calibrator, the configuration definition is split into 2
parts. One part is the definition of the displayed configuration, arranged
by category, and another part is the definition of how the configuration is
stored on the ECU.

5.1 Configuration flash storage
The configuration stored in ECU flash is described by an array of JSON
objects. A graphical interface to edit this is planned but until then this is
how it works.
In the example below, a few different configuration types are defined.
Two number arrays, one two dimensional function, one single dimensional
function, a hidden parent value, an enum attached to the parent value
and a single value scalar. The variables described mimic a fictional stabil-
ity control system. Not to be taken as an example of how to implement a
stability control system.
[

{
"id": "stabilcontrolbits",
"type": 1,
"descr": "A byte that will not be displayed anywhere by itself, but
↪→ configuration objects refer to it. This description won’t appear
↪→ anywhere in the software because this variable is effectively
↪→ hidden"

},
{

"id": "oversteer_ignretard_enable",
"type": 8,
"options": ["Disabled", "Enabled"],
"descr": "If enabled, the control strategy will retard ignition
↪→ timing if oversteer is detected"

},
{

"id": "oversteer_ignretard_max",
"type": 2,
"scale": 0.1,
"digits": 1,
"max": 50,
"descr": "This option specifies the maximum amount the ignition
↪→ timing may be retarded to reduce torque during oversteer events",
"applies": ["oversteer_ignretard_enable", "=", "Enabled"]

},

15

5. Custom configuration variables 5.1. Configuration flash storage

{
"id": "desiredyawtable",
"type": 2,
"unit": "degrees/second",
"digits": 1,
"scale": 0.1,
"sign": 1,
"array": 64,
"rows": 8,
"cols": 8,
"descr": "Desired yaw rate as a function of vehicle speed and
↪→ steering angle"

},
{

"id": "allowable_oversteer",
"type": 2,
"unit": "degrees/second",
"digits": 1,
"scale": 0.1,
"array": 8,
"descr": "What amount of oversteer is permitted before the control
↪→ strategy takes action"

},
{

"id": "steeringanglebreakpoints",
"type": 2,
"unit": "degrees",
"digits": 1,
"scale": 0.1,
"sign": 1,
"array": 8,
"input": "steeringangle",
"descr": "Breakpoints for steering angle on table axis"

},
{

"id": "roadspeedbreakpoints",
"type": 2,
"unit": "km/h",
"digits": 1,
"scale": 0.1,
"array": 8,
"input": "roadspeed",
"descr": "Breakpoints for vehicle speed on table axis"

}
]

5.1.1 Properties
A number of properties are defined for each variable, most of which are
optional. Identifier is the only mandatory field but if a type is not speci-
fied then the default type is a bit which must be accompanied by an ad-
dress property. The properties differ slightly from the real time variables
but there are similarities.

id Identifier of variable. Case sensitive. Apart from ASCII letters and
numbers the only other character allowed is the underscore. Must

16

5. Custom configuration variables 5.1. Configuration flash storage

not begin with a number and must not contain any spaces.

type Variable type. The following types are permitted:

0 Bit. Must be accompanied by an address making it an alias for a
single bit of another variable.

1 8 bit integer, sign specified separately.
2 16 bit integer, sign specified separately.
3 32 bit integer, sign specified separately.
5 32 bit IEEE float. No library functions are currently available in

the programming environment for handling these but they are
understood by Calibrator.

6 64 bit IEEE double. No library functions are currently available
in the programming environment for handling these but they
are understood by Calibrator.

7 Text variable for storing comments or descriptions.
8 Enumerator translating an integer value to text. An address can

be specified to associate with a subset of bits on another vari-
able, if address is omitted it takes the form of an 8 bit integer
variable.

9 Varpicker variable. Presented in Calibrator as a drop down list of
real time variables and stores a memory pointer to the chosen
variable.

sign If omitted, the variable is unsigned. If specified with a value of 1
the variable is signed.

unit Text specifying the unit of the variable. Default is empty.

digits Specifies the number of digits after the decimal point when vari-
able is logged or displayed in Calibrator. Default 0.

scale A floating point multiplier used when displaying or logging the
variable in Calibrator.

offset An integer number added to the raw number prior to scaling, can
be negative even if the value is unsigned.

inverse If this option is specified with a value of 1, the result is inverted
(1 over result division) before displaying.

descr A text description of the variable displayed in the description box
when a user presses the F1 key while in edit mode.

array An integer value that indicates this configuration item is an array
of multiple values, and denotes the number of values it contains. Us-
ing the rows/cols properties the displayed values may be restricted
to a smaller count.

17

5. Custom configuration variables 5.1. Configuration flash storage

cols Indicates the number of columns in a table, or values being used in
case of a single dimensional function that is to be displayed horizon-
tally. Can be an integer value or it can be the identifier of another
configuration variable that specifies the number being used.

rows Indicates the number of rows in a table, or values being used in
case of a single dimensional function that is to be displayed verti-
cally. Can be an integer value or it can be the identifier of another
configuration variable that specifies the number being used.

input Identifier of a specific real time variable. Indicates that the value(s)
in this configuration item are related to a specific real time variable,
in which case the Calibrator application will display a button to
grab the current value of the real time variable and place it at the
selected field in the editor and in the tree view the identifier of the
real time variable will be displayed next to a function if the axis the
function is based on has this defined relationship to the real time
variable.

describedby Identifier of a Varpicker configuration item that specifies
the real time variable this configuration item relates to. The format
(sign, scale, offset, digits, unit, max/min) is then inherited from the
real time variable selected by the Varpicker.

min Minimum value the user may input.

max Maximum value the user may input.

maxwidth In case of a Varpicker object, this property specifies the max-
imum byte width of the variables it presents. Set this to 2 if func-
tions that are to be used with the Varpicker object use 16 bit vari-
ables to store the data related to the Varpicker object. If omitted,
any width is allowed.

relative Used in conjunction with a describedby property to indicate
that regardless of the Varpicker source being signed or unsigned,
this variable is always signed as it describes a value relative to the
origin variable. In this case the offset specified by the origin vari-
able will not be applied either, only the scale.

verbose Used with Varpicker types only, if a value of 1 is given this spec-
ifies that the Varpicker should display the type of each variable in
the list and not just the name.

hex If a value of 1 is given, this specifies that the values should be dis-
played in hexadecimal format, using the 0x notation to clarify that
they are hexadecimal values.

options When an enum type is used, this property specifies the number
to text relationship. Can be a reference by name to a predefined
enum or map such as enum_enabled or map_inputs or it can be an
array of text values that are enumerated automatically, or it can

18

5. Custom configuration variables 5.1. Configuration flash storage

be an array of arrays, where the subarrays contain a number as the
first member and the associated text as the second member.

address Byte offset inside the real time variable memory space, or in the
case of a single bit or enumerator variable the name of the parent
variable and the bit offset inside of it. For single bit, bitmask.0
specifies the lowest significant bit of variable bitmask. For enums,
bitmask.1.3 specifies a range of bits starting at bit 1 ending at bit
3 on the variable bitmask.

variations An array of conditions and following each condition an object
whose contents is included in the parent object if the condition is
true, overriding existing fields. Each condition contains a configu-
ration variable, a comparison operator and a value. For each con-
dition there should be a corresponding inverted condition to undo
whatever changes that condition made if it no longer applies. If the
corresponding object includes an endif clause, then the condition
list will not be evaluated further once the object has been applied,
otherwise there are no limits on how many conditions can apply.
Example:
"variations": [

["fuelstrategy", "=", "Fuel mass"], { "unit": "mg/cycle", "endif":
↪→ true },

["fuelstrategy", "=", "Air mass (VE)"], { "unit": "%" }
]

beforechange A Calibrator script (see Calibrator user’s manual) that is
executed only when exiting edit mode and the value of this configu-
ration item has been changed. Executed before pushing the changes
to the ECU.

onupdate A Calibrator script that is executed whenever the value of
this configuration item has been changed for any reason, by the
editor or by downloading values from the ECU. Executed before
the changes are pushed to the ECU. Executed regardless of whether
ECU is connected or not.

onchange A Calibrator script that is executed after a new value has
been pushed to the ECU.

onmerge A Calibrator script that is executed after the value of the con-
figuration item has been changed by merging with the configuration
downloaded from the ECU.

19

5. Custom configuration variables 5.2. Configuration user interface

5.2 Configuration user interface
The configuration user interface is described by a JSON array whose
layout represents the layout displayed in the Calibrator configuration
tree.
Example:
[
{

"name": "My strategies",
"type": 255,
"value": [

{
"name": "Retard ignition on excessive oversteer",
"id": "oversteer_ignretard_enable",
"type": 3

},
{

"name": "Maximum timing to remove",
"id": "oversteer_ignretard_max",
"applies": ["oversteer_ignretard_enable", "=", "Enabled"]

},
{

"name": "Desired yaw rate",
"id": "desiredyawtable",
"type": 5,
"xaxis": "steeringangle",
"yaxis": "roadspeed"

},
{

"name": "Permitted oversteer rate",
"id": "allowable_oversteer",
"type": 5,
"xaxis": "roadspeedbreakpoints"

},
{

"name": "Road speed breakpoints",
"id": "roadspeedbreakpoints",
"type": 4

},
{

"name": "Steering angle breakpoints",
"id": "steeringanglebreakpoints",
"type": 4

}
]

}
]

5.2.1 Properties
The properties of the configuration user interface objects are again differ-
ent from the configuration flash objects. Again most of the properties are
optional, name is always mandatory and identifier is mandatory unless
it’s a widget panel or a subcategory.

name Displayed name

20

5. Custom configuration variables 5.2. Configuration user interface

type A type specifier, different from the real time or flash variable type.
The following types are valid:

0 This is the default if no type is specified, and specifies a single
numerical value.

3 Enumerator type, used in conjunction with flash item type 8.
4 List of values that is not a function of something, typically used

for variables that are used as function axis.
5 A function, with one or two axis. Internally can contain numeri-

cal values, text values, enumerators or Varpickers.
6 Text type, used in conjunction with flash item type 7.
7 Varpicker type, used in conjunction with flash item type 9.
9 Widget panel. Can have widgets that edit configuration items as

well as display data. See Calibrator user’s manual. Note that
this type is currently not compatible with Calibrator’s configu-
ration comparison and merge functions so if the configuration
items being edited here do not have another representation
they will not show up in the difference dialog when connecting
to an ECU or when comparing configuration files.

255 A subcategory, requires a value that is a JSON array of more
objects.

id Identifier to connect to a configuration flash object, unless type is 255
or 9.

context A documentation and real time variable context identifier, in-
herits to subcategories. There is currently no way to input the con-
text data from inside Calibrator but this is a valid option so it is
included for sake of complete coverage.

xaxis In case of a function (type 5) this property specifies the X axis,
and can be either the name of the configuration item that contains
the axis values or it can be a JSON array of values, numerical or
text.

yaxis Same as xaxis but for the Y axis.

xvariable Can be used with a function type to explicitly specify a real
time variable that the X axis relates to in case the variable is differ-
ent from the variable implied by the X axis.

yvariable Same as xvariable but for the Y axis.

colwidth A floating point multiplier that changes the widths of the
columns used to present the data.

novisual If a value of 1 is given, this property specifies that it makes no
sense to display the values of this function/list visually.

21

5. Custom configuration variables 5.2. Configuration user interface

value Contains the default value of a configuration item or the array
containing the child items of a category.

applies An array of conditions, each condition starting with a configu-
ration variable, the second item being the condition, either equals
or not equals ("=" or "!=") and the third item being the value, so
the array must contain items in multiples of three. If not all of the
conditions are met then the configuration item icon becomes grey in
the configuration tree, indicating to the user that the values of this
configuration item is not significant due to the strategy using it not
being enabled.

applies_any Same format as the applies property but instead of all
conditions having to be true, only one condition has to match to
indicate that this item is in use and significant.

22

6. A coding tutorial

6 A coding tutorial

Let’s start with simplest possible program. This program turns on an
output so if any output pin on the ECU is configured as User program
output 0 that output will be activated. The lowest bit of the userflags
variable will also be set high, also visible on the userflag0 alias. This
program exits after the initial run of the init function and only runs again
if the ECU restarts or if an updated version of the program is pushed to
the ECU.
function init() {

setbit(user_out0, 1);
}

To make the program continue execution after initialisation, one or more
callbacks must be created. The following program sets a callback that
runs 5 times per second, checks the value of the userflags0 variable and
changes it.
function mycallback() {

if(userflag0) {
setbit(user_out0, 0);

} else {
setbit(user_out0, 1);

}
}

function init() {
callback_5hz = mycallback;

}

Sometimes you may want to execute a program once every time an input
value changes. In this case it is simplest to allocate a variable to keep
the old state of the input value and compare every time the program
executes.
uint8 oldvalue;

function mycallback() {
// Toggle bit whenever din1 changes state from 0 to 1

if(din1 && (oldvalue == 0)) {
setbit(user_out0, 0);

} else {
setbit(user_out0, 1);

}
oldvalue = rt.din1;

}

function init() {

23

6. A coding tutorial

callback_5hz = mycallback;
}

Let’s get to some basic arithmetic.
uint16 averagespeed;

function mycallback() {
// This function computes the average value of roadspeed and roadspeed2,

↪→ using a right shift to perform a divide by 2 operation.
averagespeed = (rt.roadspeed + rt.roadspeed2) >> 1;
}

function init() {
callback_100hz = mycallback;

}

6.0.1 Serial port communications example
This program communicates with a cheap simple dash display via Blue-
tooth.
uint8 txbuf[32];
uint32 tmp;

function callback20hz() {
// send coolant temp, 0-255 for -20 to 235C

txbuf[4] = (rt.coolanttemp - 2531) / 10;
// send RPM 0-10000 = 0-20000 RPM in 6 cyl setting. Take a snapshot of

↪→ variable prior to splitting it into bytes for thread safety
tmp = rt.enginespeed;
txbuf[5] = tmp >> 8;
txbuf[6] = tmp;

// send supply volt, 0-255 = 0-25.5V
txbuf[3] = rt.supplyvoltage / 100;

// send oil temp, 0-255 = -20 - 235C
txbuf[8] = (rt.oiltemp - 2531) / 10;

// send oil pressure, 0-255 = 0-255 PSI, divide millibars by 69 to
↪→ convert to PSI.

txbuf[9] = rt.oilpress / 69;
// send boost 0-255 = 0-255 PSI

tmp = rt.map;
if(tmp > 1000) {

txbuf[10] = (tmp - 1000) / 69;
} else {

txbuf[10] = 0;
}

// send AFR, 0-9990 = 0-999:1 no scaling necessary to display lambda 1.0
↪→ as 100

tmp = rt.lambda;
txbuf[14] = tmp;
txbuf[13] = tmp >> 8;

// send EGT 0-9999 = 0-9999C
tmp = (rt.egt1 - 2731) / 10;
txbuf[12] = tmp;
txbuf[11] = tmp >> 8;

// send speed 0-255 km/h, 24 should be 0
txbuf[24] = 0;
tmp = rt.roadspeed / 10;

24

6. A coding tutorial

txbuf[23] = tmp;
// increment a counter on a byte that isn’t used to get around checksum

↪→ irregularities
txbuf[20] = txbuf[20] + 1;

txbuf[25] = crc8(txbuf, 0, 25, 0, 0x31);
uart0tx(txbuf, 27);

}

function init() {
// Assign the constant bytes that don’t change

txbuf[0] = 0xFF;
txbuf[1] = 0x1B;
txbuf[2] = 0xA0;
txbuf[26] = 0xFE;

// No data is to be received to no receive callback is registered prior
↪→ to initialising UART

init_uart(0, 9600);
callback_20hz = callback20hz;

}

25

	Introduction
	Terminology
	Syntax
	Data types
	Operators
	Built in constants
	Built in variables
	Built in functions
	Table lookup functions
	Curve lookup functions
	Miscellaneous library functions
	Communication functions
	System functions

	Custom real time variables
	Properties

	Custom configuration variables
	Configuration flash storage
	Properties

	Configuration user interface
	Properties

	A coding tutorial
	Serial port communications example

